книга

Философские проблемы математики: история и современность

Автор: Борис Яшин

Форматы: PDF

Издательство: Директ-Медиа

Год: 2018

Место издания: Москва|Берлин

ISBN: 978-5-4475-2778-5

Страниц: 210

Артикул: 46276

цена: 146
Купить и скачать Читать фрагмент Печатная книга за 846

В монографии представлены философские концепции математики, с точки зрения автора, наиболее влиятельные в тот или иной период развития математики и её философии: пифагореизм и платонизм, реализм, номинализм и натурализм, главные программы обоснования математики ХХ века, какими стали логицизм, интуиционизм и формализм. Отдельное внимание уделено математическому конструктивизму, структурализму и теоретико-категориальному подходу, взаимоотношению априоризма и эмпиризма в математике. В книге сопоставляются фундаменталистский и нефундаменталистский (социокультурный) подходы к развитию математики, особое внимание обращается на такое направление в современной философии математики, как этноматематика; исследуется специфика понимания конечного и бесконечного и роль этих категорий в развитии математического знания; обсуждаются проблемы соотношения в математике рационального и иррационального, влияние логики и интуиции в творчестве математиков, показывается значимость неявного знания в их деятельности. В ней выделен специальный раздел, в котором раскрывается гуманитарный потенциал математики, ее связь с поэзией, музыкой, архитектурой и изобразительным искусством, значение для любого вида творчества своеобразной «диффузии» интеллектуального и чувственного, научного (математического) и художественного знания.

Введение
Глава первая. Философия математики как отрасль знания: история и современность
§ 1. Философские подходы к пониманию математики
§ 2. Пифагореизм и платонизм в математике
§ 3. Математический реализм
§ 4. Номинализм
§ 5. Натурализм в математике
§ 6. Эмпиризм и априоризм в философии математики
6.1. Математический эмпиризм
6.2. Математический априоризм
6.3. Эмпиризм vs. априоризм: проблема соотношения
§ 7. Логицизм, интуиционизм и формализм – главные программы обоснования математики ХХ века
7.1. Логицизм
7.2. Интуиционизм
7.3. Формализм
§ 8. Конструктивизм как программа реформирования математики
§ 9. От структурализма – к теоретико-категориальному подходу
Глава вторая. Фундаменталистский и нефундаменталистский (социокультурный) подходы в философии математики
§ 1. Основные характеристики фундаменталистского подхода к математике
§ 2. Особенности нефундаменталистского (социокультурного) подхода к математике
§ 3. Этноматематика и происхождение математики
Глава третья. Конечное и бесконечное, рациональное и иррациональное в математике
§ 1. Конечное и бесконечное в математике
§ 2. Математическое доказательство и некоторые его проблемы
§ 3. Интуиция и логика в математическом творчестве
§ 4. Неявное знание в математике
Глава четвертая. Математика и культура
§ 1. Математика в музыке, литературе и архитектуре
§ 2. Гуманитарный потенциал математики
Заключение

Все отзывы о книге

Чтобы оставить отзыв, зарегистрируйтесь или войдите

Рецензии на книгу

Чтобы писать рецензии и получать вознаграждения за рекомендации книг, станьте экспертом

Бестселлеры