0

Гаусс Карл Фридрих

Гаусс (Carl-Friedrich Gauss) — знаменитый немецкий математик. Род. 23 апреля 1777 года в Брауншвейге и с раннего возраста обнаружил выдающиеся математические способности. Рассказывают, что, будучи трех лет, Г. решал числовые задачи и любил чертить геометрические фигуры. Юный вычислитель был представлен герцогу Карлу Вильгельму Фердинанду Брауншвейгскому и нашел в нем покровителя, принявшего живое участие в его воспитании. В 1784 г. Г. поступил в начальную школу в Брауншвейге, а в 1789 г. в коллегию того же города. В 1794 г. Г. поступил в гёттингенский университет, где занимался под руководством профессора Кестнера. В 1795 г. Гаусс отправился в Гельмштатд, где пользовался советами известного математика Пфаффа. Там же написана им докторская диссертация; в которой дано новое доказательство теоремы, что всякое алгебраическое уравнение имеет корень. Возвратясь в Брауашвейг, Г. начинает публиковать многочисленный ряд мемуаров, которые в короткое время дали молодому математику европейскую известность. Еще не достигнув 25-ти лет, Г. выступил с знаменитым трактатом по теории чисел: “Disquisitiones arithmeticae” (1801). По богатству материала, ряду прекрасных открытий, разнообразию и остроумию доказательств это сочинение до сих пор считается основным при изучении теории чисел. — Между прочим, укажем на прекрасную теорию двучленных уравнений в этом сочинении, показывающую, между прочим, что можно при помощи циркуля и линейки вписать в круг правильный семнадцатиугольник. Продолжая занятия теорию чисел, а также и другими отраслями анализа, Г. публикует ряд солидных работ по астрономии. В 1807 году Г. получает приглашение в с. петербургскую академию наук, но, по настоянию Ольберса, отказывается в 9 июня этого года назначается директором обсерватории Гётгингена и профессором университета того же города. В этих двух должностях Г. оставался до конца своей долгой и трудовой жизни. С этого времени Г. посвящает большую часть своего времени астрономическим работам, продолжая впрочем заниматься также различными частями анализа. Из астрономических работе выдающеюся является “Theoria motus corporum coelestium” — мемуар, заключающий массу ценных замечаний для вычисления элементов планетных и кометных орбит. Из приемов, предложенных Гауссом для удобства астрономических выкладок, мы укажем на введение и употребление логарифмов сумм и разностей. Трактуя вопросы теоретической астрономии и небесной механики в ряде замечательных работ, Г. не забывать и практической астрономии, причем его работы имели целью развить способы получать из наблюдений вероятнейшие результаты; с этою целью Г. развить особенный способ, известный под названием способа наименьших квадратов. Из чисто математических работ укажем на следующие: “Summatio quarundam serieriam singularium” (1808 — 1810); “О гипергеометрическом ряде” (1811 — 13); “Об определении наибольшего эллипса, вписанного в данный четырехугольник” (1810); “О протяжении эллипсоидов” (1838); “Новый способ приближенного вычисления интегралов”(1814); “Определение притяжения на точку планеты, масса которой распределена по орбите” (1818) (эта работа имеет связь с теорией вековых возмущений); “Мемуары по теории биквадратичных вычетов, в которых впервые введено в теорию чисел понятие о целых комплексных числах вида a+bi”; “Disquisitiones generales circa superficies curvas” (1827), с теоремою о неизменяемости кривизны при изгибании поверхности без складок и разрыва; “Об изображении одной поверхности на другой с подобием в бесконечно малых частях” (1828). С прибытием в Геттинген Вебера, Г. заинтересовался земным магнетизмом. Первый мемуар Г. по теории магнетизма был “Intensitas vis magneticae terrestris ad mensuram absolutam revocata” (1833). Работая вместе с Вебером, Г. изобрел новый прибор для наблюдения земного магнетизма и его изменений. В 1883 г. им была построена в Геттингене образцовая магнитная обсерватория и основано общество под названием: “Magnetisches Verein”, издававшее в 1836 — 1839 гг. журнал “Resultate der Beobachtungen des Magnetischen Vereins”. В 1838 и 1839 гг. помещены в этом журнале два важных мемуара Г. : “Allgemeine Theorie der Erdmagnetismus” и “Allgemeine Lehrsatze in Beziebung auf die im verkehrten Verhaltnisse des Quadrats der Entfernung virkenden Anziehungs und “Abstossungskrafte”. Инструменты и методы наблюдения геттингенской обсерватории получили всемирное распространение. Из работ по физике укажем еще на “Dioptrische Untersuchungen” (1840). Замечательно, что в 1833 г. геттингенская магнитная обсерватория была соединена с городом Нейбургом проволокою, по которое давались сигналы при помощи гальванического тока, по телеграфной системе Г. С 1821 г. Г. принимал участие в датской и ганноверской триангуляции, причем увеличил точность результатов важными усовершенствованиями. Между прочим, им изобретен инструмент назыв. гелиотропом. Под конец своей плодотворной деятельности Г. занимался геодезией и издал по этому предмету два мемуара под заглавием: “Untersuchungen uber Gegeastande der hоhеrеn Geodasie” (1846 — 1847). Умер 23 февраля 1855 г.
  В Г. мы видим человека с универсальными математическими способностями; им затрагивались почти все главные отрасли чистой и прикладной математики, причем всюду девизом автора было: раnса sed matura (немного, но зрело); он оставил неопубликованными много работ, считая их не достаточно обработанными. Г. всегда стремился к оригинальности; затрагивая уже ранее разрабатывавшийся вопрос, казалось, что Г. не знаком с предшествовавшими работами, так оригинальны приемы и формы, которые Г. придавал изложению. К сожалению, эта оригинальность методы при излишней лаконичности изложения делает многие места сочинений Г. весьма трудными для читателя. Замечательная способность Г. к числовым выкладкам обнаружилась во многих его работах, о чем свидетельствуют посмертные рукописи, как, например, таблица превращения в десятичные обыкновенных дробей со знаменателем меньшим 997. Большого труда стоили автору также таблицы для счета классов квадратичных форм и разложения на множителей чисел вида: а2+1, а2+4, а2+9,... а2+81. В 1868 — 1871 гг. королевское ученое общество в Гёттингене издало под редакцией Шеринга полное собрание сочинений, в семи томах. В 1880 г. Г. поставлена в Брауншвейге бронзовая статуя. Ср. Winnecke, “G. Ein Umris seines Lebens u. Wirkens” (1877); Hanselmann, “Gr. Zwolf Kapitel aus seinem Leben” (1878). Его переписка: с Шумахером издана в 1860 — 62 гг., с Гумбольдтом — в 1877 г. и с Бесселем — в 1880 г.
Д. Граве.

Дополнительная информация об авторе:
Материал в Википедии
Книги автора
Гаусс К.Ф. Избранные геодезические сочинения. (1957)
Гаусс К.Ф. Исследования по оптике. (2011)
Гаусс К.Ф. Общие исследования о кривых поверхностях. (1956)
Гаусс К.Ф. Отрывки из писем и черновиков, относящиеся к неевклидовой геометрии. (1956)
Гаусс К.Ф. Пояснение возможности построения семнадцатиугольника.
 (1976)
Книги (2)
Нет ни одного отзыва